CHROM. 17,008

COMPLEX-FORMING EQUILIBRIA IN ISOTACHOPHORESIS

VI. SIMULATION OF ISOTACHOPHORETIC EQUILIBRIA OF LANTHA-NOIDS AND DETERMINATION OF MOBILITIES AND STABILITY CON-STANTS OF ACETATE AND α-HYDROXYISOBUTYRATE COMPLEXES

TAKESHI HIROKAWA*, NOBUYUKI AOKI and YOSHIYUKI KISO

Applied Physics and Chemistry, Faculty of Engineering, Hiroshima University, Shitami, Saijo, Higashihiroshima, 724 (Japan)

(Received June 25th, 1984)

SUMMARY

The isotachophoretic separation of fourteen lanthanoids (Ln) was studied using three different electrolyte systems, viz., acetic acid (Ac), α -hydroxyisobutyric acid (HIB) and their mixture, as the complexing agent. A computational procedure based on the least-squares technique was used for the determination of the absolute mobilities of Ln-Ac, Ln-HIB and Ln(HIB)Ac complexes from the qualitative index R_E . The stability constants of Ln(HIB)Ac were also determined. Using the determined constants, the isotachophoretic separation of lanthanoids could be explained by the differences in the effective mobilities accompanied by the different abundances of multi-coordinated complexes.

INTRODUCTION

For the chromatographic separation of lanthanoids (Ln), several complexing agents such as EDTA and its derivatives, lactic acid and α -hydroxyisobutyric acid have been used. It is well known that the separability depends on the stability constants of the complexes formed. However, the mechanism of the separation has not yet been described quantitatively. In addition to the complicated equilibria involved in complex formation, the essential reason may be the difficulty of quantification of adsorption-desorption phenomena between the samples and the column packings.

Nukatsuka *et al.*¹ reported the isotachophoretic separation of Ln using α -hydroxyisobutyric acid (HIB) as the complexing agent, which was diluted with weakly interacting acetic acid (Ac). As no packings are utilized in isotachophoretic separations, the electrolyte system can be treated as a free solution and the separation behaviour can be explained quantitatively by the differences in the effective mobilities using a computational method as described previously^{2,3}.

In this paper, complex-forming equilibria of isotachophoretically separated lanthanoids were simulated to clarify how the effective mobilities of lanthanoids differ sufficiently for separation when HIB and Ac are used simultaneously as complexing agents. To simulate the isotachophoretic equilibria, absolute mobilities, acid dissociation constants and stability constants of lanthanoids and their complexes are necessary. Fortunately, some of these values have been reported by other workers: Spedding and co-workers^{4,5} studied the absolute mobilities of Ln³⁺ extensively, Sonesson⁶ determined the stability constants of multi-coordinated acetate complexes (1:1-1:4) and Powell⁷, Devine⁸ and Suzuki and Mikado⁹ determined the stability constants of HIB complexes (1:1-1:4). However, the mobilities of complex ions are not available. To determine these mobilities, isotachophoretic qualitative indices, $R_{\rm F}$, of Ln except for Pm were obtained using three different electrolyte systems, viz., (1) acetic acid, (2) HIB and (3) their mixture, as the complexing agent. In electrolyte system (3), mixed ligand complexes such as LnHIBAc⁺ may be formed among Ln, Ac and HIB. The stability constants of these complexes and the mobilities of LnHIBAc⁺ could not be found in the literature. A computational procedure was applied to the observed $R_{\rm E}$ values in order to obtain the mobilities and stability constants. Using the values obtained and reported values, the isotachophoretic equilibria of Ln-Ac. Ln-HIB and the mixed ligand systems are discussed theoretically.

THEORETICAL

The computational procedure for the analysis of the formation of multi-coordinated complexes has already been reported³. The complex-forming equilibria in the lanthanoid zone can be written as follows when the electrolyte systems contain Ac^- and HIB^- simultaneously forming multi-coordinate complexes (coordination number 1–4):

		HIBH	⇒ HIB⁻	+ H*	k _{hib}	
		AcH	\Rightarrow Ac ⁻	+ H ⁺	k _{Ac}	
Ln ³⁺	+	H ₂ O	\rightleftharpoons LnOH ²⁺	+ H ⁺	<i>k</i> ₁	
LnOH ²⁺	+	H ₂ O	\rightleftharpoons Ln(OH) ₂ ⁺	+ H ⁺	<i>k</i> ₂	(1)
$Ln(OH)_2^+$	+	H ₂ O	\rightleftharpoons Ln(OH) ₃	+ H ⁺	<i>k</i> ₃	
Ln ³⁺	+	n Ac ⁻	\rightleftharpoons LnAc _n ⁽³⁻ⁿ⁾⁺		$\beta_{\mathrm{LnAc},n}$	
Ln ³⁺	+	n HIB ⁻	\rightleftharpoons LnHIB ⁽³⁻ⁿ⁾⁺		$\beta_{LnHIB,n}$	
Ln ³⁺	+	$HIB^- + Ac^-$	⇒ LnHIBAc ⁺		$\beta_{LnHIBAc}$ +	

where k_{Ac} and k_{HIB} are the acid dissociation constants of Ac and HIB, k_1 , k_2 and k_3 are those of Ln, $\beta_{Ac,1}-\beta_{Ac,4}$ are the overall stability constants of complexes of LnAc²⁺-LnAc⁴ and $\beta_{HIB,1}-\beta_{HIB,4}$ are those of LnHIB²⁺-LnHIB⁴. The formation of the mixed ligand complex of the form of LnHIBAc⁺ was also considered. The other mixed ligand complexes such as LnHIB₂Ac and LnHIBAc₂ were not taken into account, as their abundances under the electrolyte conditions used may be negligibly small, according to preliminary simulations. This will be discussed in a later section. The effective mobility of Ln³⁺ (\bar{m}_{Ln}) coexisting with Ac⁻ and HIB⁻ in the steady state can be expressed using the mobilities, m, and the concentrations, C, of the lanthanoid species in the zone:

$$\bar{m}_{Ln} = \left(\sum_{i=0}^{2} m_{Ln}^{3-i} C_{Ln_i^{3-i}} + \sum_{j=1}^{n} m_{LnAc_j^{3-j}} C_{LnAc_j^{3-j}} + \sum_{j=1}^{n} m_{LnHIB_j^{3-j}} C_{LnHIB_j^{3-j}} + \sum_{j=1}^{n} m_{LnHIB_j^{3-j}} C_{LnHIB_j$$

+
$$m_{\text{LnHiBAc}^+}C_{\text{LnHiBAc}^+}\right) / \left(C_{\text{Ln}}^{t} + C_{\text{LnAc}}^{t} + C_{\text{LnHiB}}^{t} + C_{\text{LnHiBAc}^+}\right)$$
 (2)

where C_{Ln}^{i} , C_{LnAc}^{i} , C_{LnHIB}^{i} and $C_{LnHIBAc}^{+}$ are the total concentrations of non-complexing Ln, $C_{Ln^{3+}} + C_{LnOH^{2+}} + C_{Ln(OH)_{2}^{+}} + C_{Ln(OH)_{3}^{-}}$, and the formed complexes, respectively. C_{LnAc}^{i} , C_{LnHIB}^{i} and $C_{LnHIBAc^{+}}$ can be expressed using overall stability constants of the complexes and the concentrations of Ln^{3+} and the ligands Ac^{-} and HIB^{-} as follows:

$$C_{\rm LnAc}^{i} = \sum_{j=1}^{n} \beta_{\rm LnAc,j} C_{\rm Ln^{3+}} C_{\rm Ac}^{j}$$
(3)

$$C_{\rm LnHIB}^{i} = \sum_{j=1}^{n} \beta_{\rm LnHIB,j} C_{\rm Ln}^{3+} C_{\rm HIB}^{j-}$$
(4)

$$C_{\rm LnHIBAc^+} = \beta_{\rm LnHIBAc^+} C_{\rm Ln^{3+}} C_{\rm HIB^-} C_{\rm Ac^-}$$
(5)

Inserting eqn. 3 into eqn. 2, using dissociation constants to express concentrations of Ln species and eliminating $C_{Ln^{3+}}$ gives the following equation for \bar{m}_{Ln} :

$$\bar{m}_{Ln} = \frac{\begin{cases} m_{Ln}^{3+} + k_1/C_H m_{LnOH}^{2+} + k_1k_2/C_H^2 m_{Ln(OH)\frac{1}{2}} + \\ + \sum_{j=1}^{n} m_{LnAc_j^{3-j}} \beta_{LnAc,j} C_{Ac}^{j-} + \sum_{j=1}^{n} m_{LnHIB_3^{-j}} \beta_{LnHIB,j} C_{HIB}^{j-} + \\ + m_{LnHIBAc}^{+} \beta_{LnHIBAc}^{+} C_{Ac}^{-} C_{HIB}^{-} \end{cases}}{\begin{cases} 1 + k_1/C_H + k_1k_2/C_H^2 + k_1k_2k_3/C_H^3 + \sum_{j=1}^{n} \beta_{LnAc,j} C_{Ac}^{j-} + \\ + \sum_{j=1}^{n} \beta_{LnHIB,j} C_{HIB}^{j-} + \beta_{LnHIBAc}^{+} C_{Ac}^{-} C_{HIB}^{-} \end{cases}} \end{cases}$$
(6)

Apparently from eqn. 6, the effective mobilities of Ln decrease with an increase in the stability constants and Ac⁻ and HIB⁻ concentrations or the total concentrations of HIB and Ac and the pH of the Ln zones. The total concentrations were controlled by the total concentrations of HIB and Ac in the leading zone and mass balance equations^{2,3}. The effective mobility can be obtained after iterative calculation to fulfill the isotachophoretic conditions^{2,3}. The qualitative index R_E can be expressed as follows:

$$R_{\rm E} = \bar{m}_{\rm L}/\bar{m}_{\rm Ln} = \kappa_{\rm L}/\kappa_{\rm Ln} = E_{\rm Ln}/E_{\rm L} \tag{7}$$

where \bar{m}_{L} and \bar{m}_{Ln} are the effective mobilities of the leading and lanthanoid ions, κ_{L} and κ_{Ln} the specific conductivities of the zones and E_{L} and E_{Ln} the potential gradients. Analysis of the dependence of R_{E} on the total concentrations of Ac and HIB in the leading zone (practically the leading concentration at constant pH) gives the mobilities and stability constants of the complex ions.

EXPERIMENTAL

Stock solutions of Ln(III) ions were prepared by dissolving the chlorides (0.01 M) in deionized water. Lanthanoid chlorides were purchased from Mitzuwa Chemicals. Other chemicals used to prepare the leading and terminating electrolytes were purchased from Wako. All chemicals were of guaranteed grade.

The isotachopherograms were obtained by the use of a Shimadzu IP-1B isotachophoretic analyser equipped with a home-made potential gradient detector. The separating tube was 40 cm \times 0.5 mm I.D. The driving currents applied were in the range 50–100 μ A. All experiments were carried out at 25°C.

For precise measurement of R_E values, an internal standard such as Ba^{2+} or Na⁺, and terminating ε -aminocaproic acid (ε -AMC) was used to correct the asymmetric potential of a potential gradient detector¹⁰.

A Horiba F-7ss expanded-scale pH meter was used to measure the pH of the electrolytes.

The leading electrolyte systems used are summarized in Table I together with the calculated concentrations and effective mobilities of the leading zone constituents. The leading electrolytes Nos. 1-8 in Table I were 5.2-25.9 mM KOH solutions buffered by adding acetic acid at $pH_L \approx 4.8$ ($pH_L = pH$ of leading electrolyte). Triton X-100 (reagent grade) surfactant was added to the leading electrolytes at a level of 0.2%. pH_L was determined taking into account the buffering ability of acetic acid ($pK_a = 4.756$).

The R_E values of fourteen lanthanoids were measured under the electrolyte conditions. Two examples of the isotachopherograms of Ba, La, Ce, Pr, Nd and Sm are shown in Fig. 1. It can be seen that the light lanthanoids could be separated by complex formation with acetic acid, but the mixture containing heavier lanthanoids could not be separated. Such a separation behaviour can be understood from Fig. 2, which summarizes the observed R_E values. Apparently even at the high concentrations of K⁺ or Ac⁻, the R_E values of Sm-Lu were similar, suggesting the difficulty of separation.

The leading electrolytes Nos. 9-13 in Table I were 6.4-10.6 mM KOH solu-

TABLE I

LEADING ELECTROLYTE CONDITIONS AND CALCULATED CONCENTRATIONS AND EF-FECTIVE MOBILITIES OF CONSTITUENTS

PH_L = pH of leading electrolyte. $C_{\rm L}^{\rm c}$ = Total concentration (mM) of leading ion (K⁺). $\tilde{m}_{\rm L}$ = Effective mobility (cm² V⁻¹ sec⁻¹) of leading ion × 10⁵. $C_{\rm B,L}$ = Total concentration (mM) of buffer ion. The buffer ions are acetate for systems 1-8 and 14-17 and α -hydroxyisobutyrate (HIB) for systems 9-13. $\tilde{m}_{\rm B,L}$ = Effective mobility (cm² V⁻¹ sec⁻¹) of buffer ion × 10⁵. $C_{\rm A,L}$ = Total concentration (mM) of additive ion (HIB). $\bar{m}_{\rm A,L}$ = Effective mobility (cm² V⁻¹ sec⁻¹) of additive ion × 10⁵. Negative signs of mobilities indicate counter direction of sample migration.

System	pH_L	C_L	\hat{m}_L	$C_{B,L}^{t}$	$\bar{m}_{B,L}$	$C_{A,L}^{t}$	$\bar{m}_{A,L}$	
1	4.80	5.18	72.5	9.54	-21.6			
2	4.80	8.32	71.7	15.2	-21.4			
3	4.80	9.85	71.4	17.9	-21.4			
4	4.80	12.42	71.0	22.5	-21.3			
5	4.80	14.98	70.6	27.0	-21.2			
6	4.79	17.60	70.2	31.9	-20.9			
7	4.79	20.70	69.8	37.3	-20.8			
8	4.80	25.88	69.2	45.9	-20.8			
9	4.65	6.35	72.7	7.60	-18.1			
10	4.69	7.41	72.6	8.73	- 19.0			
11	4.70	8.47	72.4	9.93	-19.2			
12	4.68	9.53	72.2	11.2	-18.7			
13	4.73	10.59	72.1	12.3	-19.8			
14	4.77	9.85	72.2	16.8	-20.7	1.00	-26.3	
15	4.80	9.85	72.3	14.7	-21.4	2.00	-26.5	
16	4.78	9.85	72.3	13.1	-21.4	3.00	-26.5	
17	4.78	9.85	72.2	11.8	-20.9	4.00	-26.4	

tions. pH_L was adjusted to *ca*. 4.7 by adding HIB. At this pH a good buffering ability cannot be obtained (pK_a of HIB = 3.971). However, this pH_L was preferable in comparison with the electrolyte systems using acetic acid. The electrolyte systems were used for the separation of La, Ce, Pr, Nd, Sm, Eu and Gd. The heavier lanthanoids could not be detected when ε -AMC was used as the terminator. Fig. 3 shows

Fig. 1. Observed isotachopherograms of Ba^{2+} , Na^+ , La^{3+} , Ce^{3+} , Pr^{3+} , Nd^{3+} and Sm^{3+} coexisting with acetic acid at different leading ion concentrations. The leading ion is K^+ and the terminating ion is ε -aminocaproate (ε -AMC). imp = Impurity in the electrolyte system.

Fig. 2. Observed $R_{\rm E}$ values (\odot) of fourteen lanthanoids coexisting with acetic acid at pH_L ≈ 4.8 . The curves show the dependence on K⁺ concentration of simulated $R_{\rm E}$ values using best-fitted mobility.

Fig. 3. Observed isotachopherograms of Ba^{2+} , Na^+ , La^{3+} , Ce^{3+} , Pr^{3+} , Nd^{3+} and Sm^{3+} coexisting with α -hydroxyisobutyric acid at different leading ion concentrations. The leading ion is K^+ and the terminating ion is ε -aminocaproate (ε -AMC).

three examples of the isotachopherograms observed for Ba, Na, La, Ce, Pr, Nd and Sm. Fig. 4 shows the dependence of K^+ concentration on the observed R_E values. On comparing Fig. 4 with Fig. 2, it is apparent that the step heights of the lanthanoids increased significantly, suggesting a stronger interaction of HIB with lanthanoids.

The leading electrolytes Nos. 14–17 in Table I were 9.85 mM KOH solutions containing HIB in the range 1-4 mM, and the pH_L was adjusted to *ca.* 4.8 by adding acetic acid. Four different electrolytes (Nos. 14–17) were used and the $R_{\rm E}$ values of fourteen lanthanoids were measured. Fig. 5 shows two examples of isotachopherograms of Na and fourteen lanthanoids. When the leading electrolyte containing 1 mM HIB was used, the separation behaviour of Ln was strongly effected by the formation of Ln-Ac complexes and the separation was not improved, except that heavy lathanoids were separated from the mixed zone of Gd, Eu, Tb, Dy and Ho. The mixed zone could be dissolved by increasing the HIB concentration. When the electrolyte containing 4 mM HIB was used, the fourteen lanthanoids could be completely separated. Fig. 6 summarizes the observed $R_{\rm E}$ values varying HIB concentration in the range of 0-4 mM. It is apparent that the separation of Eu and Gd was the most difficult.

It should be noted that the K⁺ and HIB concentrations under the present conditions were low in comparison with the earlier reported conditions¹, K⁺ = 27 mM, total HIB = 15 mM and pH_L = 4.92. Under these conditions the mixed ligand complexes LnHIB₂Ac or LnHIBAc₂ could not be neglected.

Fig. 4. Observed $R_{\rm E}$ values (\bullet) of La³⁺, Ce³⁺, Pr³⁺, Nd³⁺, Sm³⁺, Eu³⁺ and Gd³⁺ coexisting with α -hydroxyisobutyric acid at pH_L \approx 4.7. The curves show the dependence on K⁺ concentration of simulated $R_{\rm E}$ values using best-fitted mobility.

Fig. 5. Observed isotachopherograms of Na⁺ and fourteen lanthanoids coexisting with acetic acid and α -hydroxyisobutyric acid (1 and 4 mM). The leading ion is K⁺ and the terminating ion is ε -aminocaproate (ε -AMC).

Fig. 6. Observed R_E values (\bullet) of fourteen lanthanoids coexisting with acetic acid and α -hydroxyisobutyric acid at pH_L = 4.8. The concentrations of HIB are in the range 0-4 mM. The curves show the dependence on K⁺ concentration of simulated R_E values using best-fitted mobility.

RESULTS AND DISCUSSION

The evaluation of the mobilities and stability constants of Ln complexes and the data processing were carried out with a SORD M223 microcomputer and an NEC MS-120 minicomputer.

Table II shows the physico-chemical constants of the electrolyte systems. They were taken from the literature¹¹, except for the mobilities of HIB and AMC, which were determined by the isotachophoretic method.

Table III shows the absolute mobilities of Ln and the stability constants of Ln-Ac and Ln-HIB complexes at an ionic strength of zero.

The stability constants of $LnAc_4^-$ are not shown, as the abundances of the complex ions were negligibly small according to preliminary simulations under the

TABLE II

MOBILITIES AND ACID DISSOCIATION CONSTANTS OF CONSTITUENTS¹¹ OF LEADING AND TERMINATING ELECTROLYTES (25°C).

 m_0 = Absolute mobilities (cm² V⁻¹ sec⁻¹) × 10⁵. pK_a = Thermodynamic acid dissociation constant.

Cation	m_0	pK _a	Anion	m_0	pK _a
K ⁺	76.2	4.373	α-Hydroxyisobutyric acid	33.5*	3.971
ε-Aminocaproic acid	28.8*		Acetic acid	42.4	4.756

* Determined by our isotachophoretic method.

TABLE III

ABSOLUTE MOBILITIES OF LANTHANOIDS $(Ln)^{4.3}$ AND THERMODYNAMIC STABILITY CONSTANTS OF Ln-ACETATE (Ac)⁶ AND Ln- α -HYDROXYISOBUTYRATE (HIB) COMPLEX-ES⁸

 m_0 = Absolute mobilities (cm² V⁻¹ sec⁻¹) of Ln³⁺ × 10⁵. Log β_n = Overall stability constants of *n*-coordinated complexes.

Ln ³⁺	m_0	Ln-Ac c	omplexes		Ln–HIB	complexes		Ln-HIB complexes								
		$Log\beta_1$	$Log\beta_2$	Log _{β3}	$Log\beta_1$	$Log\beta_2$	Log _{β3}	Logβ4								
La ³⁺	72.3	2.50	3.96	4.99	2.99	5.15	6.20	_								
Ce ³⁺	72.4	2.63	4.26	5.14	3.09	5.44	6.36	_								
Pr ³⁺	72.2	2.76	4.47	5.28	3.24	5.56	6.79	_								
Nd ³⁺	72.0	2.85	4.61	5.46	3.29	5.66	7.08	-								
Sm ³⁺	71.1	2.96	4.79	5.86	3.42	6.00	7.64	8.83*								
Eu ³⁺	70.3	2.95	4.77	5.86	3.51	6.19	8.11	8.56*								
Gd ³⁺	69.8	2.79	4.65	5.72	3.53	6.25	8.21	9.34								
Tb ³⁺	69.0	2.70	4.50	5.76	3.62	6.47	8.51	9.69								
Dy ³⁺	68.0	2.62	4.34	5.80	3.66	6.55	8.60	9.82*								
Ho ³⁺	68.7	2.58	4.31	5.76	3.73	6.71	8.84	9.37								
Er ³⁺	68.3	2.55	4.26	5.66	3.78	6.87	9.06	10.49								
Tm ³⁺	67.8	2.57	4.29	5.60	3.83	6.94	9.20	10.40								
Yb ³⁺	67.5	2.59	4.37	5.55	3.89	7.07	9.35	10.49								
Lu ³⁺	67.0	2.61	4.41	5.56	3.94	7.17	9.56	11.06								

present electrolyte conditions. In the following simulations, therefore, the formation of $LnAc_4^-$ was not considered. The stability constants in Table III were evaluated by applying activity coefficients calculated by applying the Debeye-Hückel equation to the reported stability constants at a constant ionic strength of 0.1 or 1.0 $M^{6,8,9}$. In isotachophoresis the ionic strength differs among the separated zones and the value is usually less than 0.01 M. Therefore, the reported stability constants, as such, could not be used in simulation. In simulation the values in Table III were again corrected taking into account the ionic strength of the separated zones.

The pK_a values of the Ln used were $pK_1 = 6$, $pK_2 = 7$ and $pK_3 = 8$, considering the reported values of pK_1 of Ln^{3+} in the range 5.6–9.0 (ref. 12). The precise values are preferable but are not necessary for the present purpose, as almost all of the non-complexing lanthanoids may exist as trivalent ions under the present experimental conditions of $pH_L = 4.6-4.8$, considering that the pH of the sample zone is lower than pH_L . The suitability of the assumed pK_a values was confirmed by measuring the R_E values of Ln at $pH_L = 5.3$ ($[K^+] = 15 \text{ mM}$) using acetic acid as the complexing agent. The R_E values agreed well with those obtained at $pH_L = 4.8$ (Fig. 2), except for Dy and Ho. The observed R_E values of Dy and Ho at $pH_L = 5.3$ were higher than those at $pH_L = 4.8$ by *ca*. 0.08, suggesting the formation of small amounts of hydroxy complexes. However, at $pH_L = 4.8$ the abundance may be negligibly small. As a precaution we did not consider the R_E values at $pH_L = 5.3$ in the following mobility determination.

The mobilities of the three-coordinate complexes were zero, but those of $LnAc^{2+}$, $LnAc^+_2$, $LnHIB^{2+}$, $LnHIB^+_2$ and $LnHIB^-_4$ were not known. In addition to these ions, the mobilities of mixed ligand complexes of $LnHIBAc^+$ should be determined; there may be formed by the use of the electrolyte systems containing complexing agents of both Ac and HIB (Nos. 14–17). The mobilities of monovalent ions of $LnAc^+_2$, $LnHIB^+_2$ and $LnHIB^-_4$ were (reasonably) assumed to be the half of those the divalent ions. The mobilities of $LnHIBAc^+$ may be between $LnAc^+_2$ and $LnHIB^+_2$ and the values were evaluated on the assumption that the mobilities of $LnHIB^+_2$, $LnHIBA^+$ and $LnAc^+_2$ are inversely correlated with the square roots of the formula weights of the ions¹³. Then the mobility of $LnHIBAc^+$ can be given as

$$m_0(\text{LnHIBAc}^+) = 0.447 \ m_0(\text{LnHIB}_2^+) + 0.553 \ m_0(\text{LnAc}_2^+)$$
 (8)

By the use of these assumptions, the mobilities that should be determined independently could be reduced to those of $LnAc^{2+}$ and $LnHIB^{2+}$.

As shown in Table III, the mobilities of Ln^{3+} are similar but decrease slightly according to the atomic number. Therefore, it is probably that the complex ions may have similar mobilities when the coordination number and the ligands are the same. Although the stability constants of LnHIBAc⁺ have not been reported, the values may be between LnHIB₂⁺ and LnAc₂⁺.

The evaluation of the mobilities and stability constants was based on a computational method applying the least-squares technique to the observed seventeen R_E values for Ln-Gd and the twelve R_E values for Tb-Lu (Figs. 2, 4 and 6). Good agreement was obtained between the observed and simulated R_E values; the mean errors were less than 1.1% for all lanthanoids and the individual errors were less than *ca.* 3%. When the mixed ligand complexes were not taken into account, the agreement was unsatisfactory, especially for the observed R_E values with electrolyte systems 14–17, confirming the formation of LnHIBAc⁺ complexes.

Table IV shows the simulated $R_{\rm E}$ values, concentrations and effective mobilities for La, Sm, Gd, Ho, Tm and Lu. The evaluated mobilities of the complex ions and the reported mobilities of ${\rm Ln}^{3+}$ are shown in Fig. 7 and Table V. As expected, the evaluated mobilities of the complex ions were very similar. For ${\rm LnAc}^{2+}$ the values were in the range 47.4 $\cdot 10^{-5}$ (La) to 47.0 $\cdot 10^{-5}$ cm²V⁻¹ sec⁻¹ (Dy, Tm and Yb) and for ${\rm LnHIB}^{2+}$ they were in the range of 41.3 $\cdot 10^{-5}$ (La) to 37.8 $\cdot 10^{-5}$ cm²V⁻¹ sec⁻¹ (Dy). For monovalent ions of ${\rm LnAc}^{+}_2$ and ${\rm LnHIB}^{+}_2$ they were half of the above values from the assumption and for ${\rm LnHIBAc}^+$ the values were in the range 22.3 $\cdot 10^{-5}$ (La) to 21.5 $\cdot 10^{-5}$ cm²V⁻¹ sec⁻¹ (Dy and Yb). Fig. 7 also shows the evaluated stability constants of log β (LnHIBAc⁺) at I = 0 and the reported stability constants of ${\rm LnAc}^+_2$ and ${\rm LnHIB}^+_2$ corrected to I = 0. For the light lanthanoids the stability constants of LnHIBAc⁺ were similar with those of LnHIB⁺₂ and for others they were between LnHIB⁺₂ and LnAc⁺₂.

Using the evaluated constants, the effective mobilities and concentrations of the constituents of the Ln zone were simulated under the isotachophoretic steady state. Fig. 8 shows the dependence of the K⁺ concentration on the effective mobilities of Ln interacting with Ac⁻. The leading electrolytes do not contain HIB. From eqn. 6 (in this instance the terms related to HIB should be omitted) the effective mobilities of Ln ions decrease with increasing Ac^{-} concentration. The profiles of the curves are very similar, namely, an increase in the Ac⁻ concentration in the leading zone decreased the effective mobilities of Ln to similar extents. Consequently, lanthanoids cannot be separated by complex formation with Ac^- . Fig. 9 shows the abundances of acetate complexes for La, Sm and Tm. As the stability constants of Sm complexes with Ac^{-} are the largest among the lanthanoids, as shown in Table III, the abundance of non-complexing Sm³⁺ is the smallest, as shown in Fig. 9. The relatively smaller effective mobility of Sm can be understood as the result of the large abundance of the complexes, *i.e.* the mobility of $SmAc^{2+}$ is *ca*. two thirds of that of Sm^{3+} , that of $SmAc_{2}^{+}$ is ca. one third of that of Sm^{3+} and that of $SmAc^{3}$ is zero, and the formation of these complexes decreases the effective mobility. The similarity of the effective mobilities of La and Tm can be elucidated by the fact that the abundance of LaAc²⁺ is larger than that of $TmAc^{2+}$ but the abundance of $LaAc_2^+$ is smaller than that of $TmAc_{2}^{+}$.

Fig. 10 shows the dependence of the K⁺ concentration on the abundance of La, Sm and Gd complexes with HIB in the isotachophoretically separated zones. The leading electrolytes do not contain Ac⁻. The abundances of non-complexing Ln³⁺ quickly decrease with an increase in the K⁺ or HIB concentration, as expected from the large stability constants of HIB complexes. With acetate complexes the main species are one-coordinated but with HIB complexes the main species are two-coordinated, and even four-coordinated species are formed to a small extent. For the heavier lanthanoids the simulational calculation did not converge to the steady state. This phenomenon occurred with Tb at a K⁺ concentration less than 4 mM, with Dy at a K⁺ concentration less than 6 mM, and so on. This was caused by the decrease in the pH of the lanthanoid zone to an isotachophoretically unallowable extent accompanied by a strong interaction between the heavy lanthanoids and HIB. According to simulation, the lower limit of the pH of the sample zone at the steady state

щ
님
7
È

OBSERVED AND SIMULATED RE VALUES OF La, Sm, Gd, Ho, Tm AND Lu, AND EFFECTIVE MOBILITIES AND CONCENTRATIONS OF ZONE CONSTITUENTS (25°C) No. = Number of electrolyte system shown in Table I. $R_{\rm E}$ = Ratio of potential gradients, $E_{\rm s}/E_{\rm L}$. Dev. = Deviation (%). $m_{\rm s}$ = Effective mobility (cm² V⁻¹ sec^{-1} × 10⁵ of sample ion. pH₃ = pH of sample zone. C_3 = Total concentration (mM) of sample ion including complexes. P_1 , P_2 and P_3 = Abundances $P_8 = Abundance$ (%) of mixed-ligand complexes LnHIBAc⁺. $C_B = T$ otal concentration (mM) of non-complexing buffer ion (acetate for systems 1-8 and 14-17, α -hydroxyisobutyrate for systems 9-13). $\tilde{m}_{\rm B}$ = Effective mobility (cm² V⁻¹ sec⁻¹) of buffer ion × 10⁵. $C_{\rm A}$ = Total concentration (mM) of non-complexing additive ion (a-hydroxyisobutyrate). \bar{m}_{A} = Effective mobility (cm² V⁻¹ sec⁻¹) of additive ion × 10⁵. κ = Conductivity of zone (mS/cm). I = Ionic strength of (%) of LnAc²⁺, LnAc²⁺ and LnAc₃ complexes, respectively. P_4 , P_5 , P_6 and P_7 = Abundances (%) of LnHIB²⁺, LnHIB²⁺, LnHIB³ and LnHIB⁴⁺, respectively. sample zone $\times 10^3$.

×

ŴЛ

రౌ

mв

J C

 P_8

4

 P_6

Р,

Ч 4

Р3

 P_2

P,

రో

 pH_L

 \bar{m}_S

Ln No. R_E

Obsa. Catca 1.40 1.41 1.49 1.51 1.54 1.55 1.54 1.55 1.66 1.66 1.66 1.66 1.70 1.71 1.71 1.71	t. Dev. - 0.6 - 1.2 - 0.4																	
40 1.41 54 1.51 56 1.55 56 1.61 70 1.71 76 1.71	- 0.6 - 1.2 - 0.4		i		4		•											
449 1.51 54 1.55 60 1.61 76 1.66 78 78 76	- 1.2 - 0.4 - 0.4	51.5	4./1	1.77	43.0	3.9	0.2						8.85	- 14.4			0.40	1.91
.54 1.55 .60 1.61 .66 1.66 .70 1.71 78 1.76	-0.4 -0.4	47.6	4.69	2.90	49.8	6.5	0.4						13.9	- 12.9			0.59	11.9
.60 1.61 .66 1.66 .70 1.71 78 1.76	-0.4	46.2	4.69	3.45	51.8	7.8	0.5						16.3	- 12.4			0.68	13.8
1.70 1.76 1.70 1.71 1.78 1.76		44.2	4.67	4.39	54.2	9.7	0.8						20.2	- 11.7			0.82	16.8
1.70 1.71 78 1.76	0.1	42.6	4.66	5.34	55.6	11.5	1.1						24.1	- 11.1			0.95	19.6
1 78 1 76	-0.4	41.2	4.64	6.32	56.5	13.1	1.4						28.4	-10.6			1.08	22.4
	1.2	39.7	4.63	7.49	57.0	14.9	1.9						33.1	-10.1			1.22	25.6
1.85 1.84	0.7	37.7	4.63	9.45	57.1	17.5	2.6						40.3	- 9.57			1.45	30.6
1.92 1.95	-1.6	37.3	4.30	2.27				53.7	24.8	1.0	0.0		6.32	- 9.92	_		0.33	7.01
2.03 2.03	0.2	35.8	4.32	2.68				53.0	27.7	1.3	0.0		7.15	- 9.54			0.37	7.93
2.10 2.10	0.2	34.5	4.31	3.10				52.2	30.1	1.6	0.0		8.06	- 9.14			0.40	8.81
2.15 2.16	-0.4	33.4	4.29	3.52				51.2	32.3	1.9	0.0		9.07	- 8.72			0.44	9.64
2.26 2.22	1.8	32.5	4.31	3.95				50.2	34.3	2.2	0.0		9.78	- 8.54			0.47	10.5
1.61 1.61	0.2	44.9	4.66	3.27	44.2	6.0	0.4	11.5	0.7	0.0	0.0	8.4	15.2	- 12.1	0.72	0.9	0.66	13.2
1.72 1.70	1.3	42.6	4.69	3.15	36.3	4.4	0.2	22.0	2.6	0.0	0.0	14.3	13.0	-12.5	1.46	-0.7	0.62	12.6
1.76 1.78	-0.9	40.7	4.68	3.10	29.1	3.1	0.1	30.7	5.6	0.1	0.0	17.6	11.4	-12.5	2.22	-2.2	0.58	12.1
1.84 1.85	-0.3	39.1	4.65	3.10	22.9	2.1	0.1	37.4	9.1	0.2	0.0	18.5	10.2	- 12.2	2.99	-3.5	0.56	11.7
1.60 1.63	-2.0	44.4	4.66	1.88	60.4	12.0	0.5						8.61	-10.7			0.35	6.67
1.75 1.77	-1.1	40.6	4.64	3.10	61.6	17.8	1.1						13.5	- 9.47	_		0.51	9.89
1.79 1.82	-1.8	39.2	4.63	3.70	61.3	20.1	1.4						15.8	- 9.06			0.58	11.4
1.92 1.90	0.8	37.3	4.62	4.73	60.2	23.5	2.0						19.7	- 8.53			0.69	13.7
2.00 1.97	1.2	35.7	4.60	5.76	58.7	26.4	2.6						23.5	- 8.12			0.80	15.9
2 03 2.04	-0.6	34.4	4.58	6.82	57.2	28.9	3.2						27.7	- 7.72	_		0.90	18.0

22

20.5 24.3	4.83	5.46	6.03	6.55	7.09	10.8	10.2	9.71	9.27	6.95	10.3	11.8	14.1	16.4	18.5	21.0	24.8	3.95	4.48	4.94	5.35	5.78	10.9	10.0	9.26	8.60	7.46	11.1	12.7	15.2	17.6	19.9	22.4	26.3	10.8
1.02	0.25	0.27	0.30	0.32	0.34	5.74 0.54	3.78 0.50	1.89 0.47	0.15 0.44	0.36	0.52	0.59	0.70	0.81	0.91	1.03	1.21	0.23	0.25	0.27	0.29	0.30	9.63 0.54	6.81 0.49	4.10 0.44	1.74 0.41	0.37	0.55	0.62	0.74	0.85	0.96	1.07	1.25	14.2 0.53
$\begin{array}{rrrr} 32.2 & -7.40 \\ 39.3 & -7.05 \end{array}$	6.29 - 6.70	7.07 - 6.52	7.94 - 6.29	8.93 - 6.02	9.59 - 5.93	14.6 - 9.09 0.63	12.3 - 9.72 1.30	10.8 - 9.91 2.00	9.71 - 9.72 3.03	8.65 -11.8	13.5 -10.4	15.9 - 9.88	19.8 – 9.24	23.6 - 8.76	27.7 – 8.27	32.3 - 7.89	39.3 – 7.47	6.66 - 5.51	7.42 - 5.37	8.32 - 5.18	9.37 – 4.94	10.0 - 4.86	14.6 -10.2 0.60	12.3 -11.1 1.27	10.9 -11.2 1.97	9.82 -10.8 2.68	8.73 -13.5	13.7 -11.9	16.0 -11.3	19.9 - 10.6	23.8 – 9.97	28.0 - 9.37	32.6 - 8.87	39.7 - 8.29	14.5 - 12.0 0.52
						15.9	27.2	32.0	31.6														16.9	25.4	25.8	22.2									18.1
	0.3	0.4	0.5	0.6	0.8	0.0	0.0	0.0	0.1									0.4	0.5	0.7	0.8	1.0	0.0	0.0	0.1	0.1									0.0
	5.5	6.7	7.7	8.7	9.7	0.0	0.3	0.8	1.7									10.2	12.2	13.9	15.4	16.9	0.1	1.0	2.8	5.0									0.4
	42.9	45.5	47.5	49.0	50.3	1.6	6.7	13.9	21.6									4.9	46.8	48.1	49.0	49.7	3.3	12.1	22.4	30.9									8.2
	43.8	41.2	38.9	37.0	35.1	12.2	23.5	31.7	36.6									38.6	35.6	33.2	31.2	29.3	18.4	31.7	37.7	39.1									29.3
3.9						1.0	0.6	0.4	0.2	0.5	1.0	1.4	1.9	2.5	3.2	3.9	5.2						0.9	0.5	0.2	0.1	0.7	1.7	2.3	3.3	4.4	5.5	6.8	8.9	1.1
31.4 34.7						15.9	11.4	7.6	4.8	11.4	17.3	19.7	23.2	26.2	28.8	31.4	34.9						13.9	8.5	4.8	2.6	7.3	11.6	13.5	16.2	18.5	20.5	22.6	25.3	7.2
55.3 52.4						53.0	42.8	32.7	24.0	53.1	55.7	55.8	55.3	54.4	53.2	51.7	49.2						43.6	30.5	20.0	12.9	44.7	49.6	50.6	51.3	51.3	50.9	50.1	48.4	30.9
8.09 10.2	2.16	2.60	3.02	3.43	3.87	3.30	3.07	3.00	3.03	1.83	3.03	3.62	4.63	5.64	6.70	7.95	10.1	1.94	2.38	2.78	3.17	3.60	3.22	3.07	3.10	3.22	1.77	2.91	3.47	4.43	5.40	6.40	7.59	9.61	3.08
4.57 4.56	4.01	4.02	4.02	3.99	4.01	4.62	4.65	4.64	4.60	4.67	4.64	4.63	4.62	4.60	4.58	4.57	4.56	3.82	3.84	3.83	3.81	3.82	4.62	4.63	4.60	4.53	4.69	4.66	4.65	4.63	4.61	4.59	4.57	4.55	4.61
33.0 31.2	27.9	26.4	25.3	24.3	23.4	37.1	34.5	32.4	30.7	45.6	41.5	40.0	38.0	36.3	34.9	33.5	31.5	25.6	24.1	22.9	21.9	20.9	37.0	33.6	30.9	28.7	47.8	43.7	42.1	39.9	38.1	36.5	34.8	32.6	36.0
3.1 0.9	-1.6	0.2	0.2	-0.6	1.7	-1.9	0.8	-0.3	0.8	-2.6	-0.5	-0.9	-0.5	1.3	-0.1	2.1	1.0	-0.2	1.2	0.1	-1.2	-0.1	-2.1	0.0	0.4	0.4	0.2	-0.1	-1.5	-0.5	-1.8	0.3	1.8	2.0	-0.1
2.11 2.21	2.61	2.74	2.86	2.96	3.07	1.94	2.09	2.22	2.35	1.59	1.72	1.78	1.86	1.94	2.01	2.08	2.20	2.83	3.01	3.17	3.29	3.4	1.95	2.14	2.34	2.52	1.52	1.64	1.70	1.78	1.85	1.92	007	2.13	7.00
2.18 2.24	2.57	2.75	2.87	2.95	3.13	1.91	2.11	2.22	2.37	1.50	1.72	1.77	1.86	1.97	2.01	2.13	2.22	2.83	3.05	3.17	3.26	3. 4	16.1	2.17	2.35	2.53	1.52	1.64	1.67	1.77	1.82	1.93	2.04	2.17	66.1
r %	6	10	11	12	13	14	15	16	17	1	7	m	4	Ś	9	5	×	6	10	11	12	13	14	15	16	17	l	3	'n	4	S	اد		×:	4
										Ъд																	Но								

COMPLEX-FORMING EQUILIBRIA IN ITP. VI.

23

(Continued on p. 24)

I		9.11	7.91	7.07	7.48	11.1	12.8	15.4	17.8	20.2	22.8	26.9	10.5	8.43	7.12	6.26	7.32	10.9	12.5	15.0	17.4	19.7	22.2	26.3	10.0	7.75	6.38	5.55
×		0.44	5 0.38	8 0.34	0.37	0.55	0.62	0.74	0.86	0.96	1.09	1.27	0.51	0.41	: 0.35	0.31	0.36	0.53	0.61	0.73	0.84	0.94	1.06	1.25	0.49	0.38	0.32	0.28
т _л		9.45	-5.45	-2.43									15.4	9.89	5.52	2.42									16.5	10.1	5.55	2.42
5		1.20	1.90	2.59									0.50	1.20	1.87	2.54									0.50	1.19	1.87	2.53
щв	l	-12.6	- 12.1	- 11.0	-13.6	- 12.0	-11.5	- 10.7	- 10.1	- 9.55	- 9.07	- 8.51	- 12.2	-12.6	-11.6	-10.2	-13.2	-11.6	-11.1	-10.4	- 9.79	- 9.23	- 8.77	- 8.25	- 12.2	-12.3	- 10.9	- 9.18
$G_{\rm B}$		12.2	10.8	9.86	8.73	13.7	16.0	19.9	23.8	28.0	32.6	39.7	14.4	12.2	10.8	9.99	8.69	13.6	16.0	19.8	23.7	27.9	32.4	39.5	14.4	12.2	11.0	10.1
P_8		20.4	15.8	11.4									18.8	18.0	12.4	8.3									15.9	12.6	7.9	5.0
P_{γ}		0.0	0.0	0.1									0.0	0.1	0.2	0.4									0.0	0.2	0.6	1.0
P_6		2.9	6.6	10.1									0.7	4.8	9.9	14.1									1.4	7.7	14.0	18.7
P_5		26.0	38.7	45.7									11.7	33.3	4.9	49.9									16.5	39.9	48.9	51.9
P_4		39.8	38.0	34.1									32.3	38.5	33.7	29.0									34.2	35.1	28.7	24.0
P_3		0.4	0.1	0.0	0.5	1.2	1.6	2.4	3.2	4.0	5.0	6.7	0.7	0.2	0.0	0.0	0.4	1.0	1.3	2.0	2.6	3.3	4.1	5.4	0.5	0.1	0.0	0.0
P_2		2.9	1.2	0.5	7.0	11.4	13.2	16.0	18.4	20.6	22.8	25.7	6.2	2.0	0.7	0.3	8.6	13.7	15.9	19.1	21.8	24.3	26.8	30.2	6.4	1.7	0.5	0.2
P_1		14.9	7.4	4.1	44.4	49.5	50.7	51.7	51.9	51.7	51.0	49.6	27.4	10.9	4.9	2.5	45.6	50.1	51.0	51.6	51.5	51.0	50.1	48.4	24.0	8.1	3.4	1.7
ъ		3.12	3.29	3.45	1.76	2.89	3.46	4.41	5.38	6.38	7.57	9.58	3.07	3.20	3.41	3.54	1.77	2.92	3.49	4.46	5.4	6.46	7.67	9.73	3.19	3.40	3.59	3.66
$^{D}H^{T}$		4.58	4.51	4.41	4.69	4.66	4.65	4.64	4.62	4.60	4.58	4.57	4.60	4.55	4.45	4.34	4.68	4.66	4.65	4.63	4.62	4.59	4.58	4.57	4.59	4.50	4.38	4.25
тs	ļ	30.2	26.4	23.9	47.6	43.7	42.2	40.1	38.3	36.8	35.3	33.1	34.8	28.1	24.1	21.6	46.6	42.7	41.3	39.2	37.5	36.1	34.6	32.5	33.6	26.3	22.3	19.8
	. Dev.	1.2	-0.5	- 0.0	-0.2	-0.2	-0.8	-0.6	0.5	0.2	0.6	-0.0	-0.2	0.7	-0.8	0.6	-0.9	-1.2	- 1.8	-1.1	-0.0	2.2	0.5	1.4	0.0	0.3	-0.9	0.8
	Calcd	2.39	2.73	3.02	1.52	1.64	1.69	1.77	1.84	1.91	1.98	2.09	2.08	2.57	3.00	3.34	1.55	1.68	1.73	1.81	1.88	1.95	2.02	2.13	2.15	2.74	3.25	3.65
R_{E}	Obsd.	2.42	2.72	3.02	1.52	1.64	1.68	1.76	1.85	1.91	1.99	2.09	2.07	2.59	2.97	3.36	1.54	1.66	1.70	1.79	1.88	1.99	2.03	2.16	2.15	2.75	3.22	3.68
No.		15	16	17	-	7	ŝ	4	Ś	9	٢	œ	14	15	16	17	-	2	ę	4	S	6	٢	×	14	15	16	17
Ln		ł			Tm												Γſ											

24

TABLE IV (continued)

Fig. 7. (A) Evaluated mobilities of complex ions, $LnAc^{2+}$, $LnAc^{2+}$, $LnHIB^{2+}$, $LnHIB^{+}$ and $LnHIBAc^{+}$ and reported mobilities of lanthanoid ions^{4,5}. (B) Evaluated stability constants of $LnHIBAc^{+}$ at I = 0 and the stability constants of $LnHIB_{2}^{+}$ and $LnAc_{2}^{+}$ corrected to I = 0 using the reported values^{6,8}.

TABLE V

DETERMINED MOBILITIES AND STABILITY CONSTANTS OF LANTHANOID ACETATE, LANTHANOID- α -HYDROXYISOBUTYRATE AND THE MIXED LIGAND COMPLEXES

 m_0 = Absolute mobilities (cm² V⁻¹ sec⁻¹) × 10⁵.Log β (LnHIBAc⁺) = Thermodynamic overall stability constants of mixed ligand complexes LnHIBAc⁺.

Ln	m_0 of comp	olex ions				$Log\beta$ (LnHIBAc ⁺)
	$LnAc^{2+}$	LnAc ₂ ⁺	LnHIB ²⁺	$LnHIB_2^+$	LnHIBAc+	_
La ³⁺	47.4	23.7	41.3	20.7	22.3	5.18
Ce ³⁺	47.1	23.5	41.1	20.5	22.2	5.42
Pr ³⁺	47.1	23.6	39.7	19.9	21.9	5.54
Nd ³⁺	47.1	23.6	39.6	19.8	21.9	5.64
Sm ³⁺	47.2	23.6	39.6	19.8	21.9	5.89
Eu ³⁺	47.2	23.6	40.5	20.2	22.1	5.95
Gd ³⁺	47.2	23.6	39.9	20.0	22.0	5.84
Tb ³⁺	47.1	23.6	39.7	19.8	21.9	5.90
Dy ³⁺	47.0	23.5	37.8	18.9	21.5	5.87
Ho ³⁺	47.1	23.5	38.6	19.3	21.6	5.88
Er ³⁺	47.1	23.5	39.6	19.8	21.9	5.89
Tm ³⁺	47.0	23.5	38.7	19.3	21.6	5.96
Yb ³⁺	47.0	23.5	38.1	19.1	21.5	5.93
Lu ³⁺	47.1	23.5	39.7	19.8	21.9	5.98

Fig. 8. (A) Dependence on K^+ concentration of the effective mobilities of fourteen lanthanoids coexisting with acetic acid. (B) Dependence on α -hydroxyisobutyric acid concentration of the effective mobilities of fourteen lanthanoids coexisting with acetic acid and HIB.

Fig. 9. Dependence on K^+ concentration of the abundance of non-complexing Ln^{3+} , one-coordinated, two-coordinated and three-coordinated complexes with acetate ions and effective mobilities of La, Sm and Tm. $pH_L = 4.8$.

Fig. 10. Dependence on K⁺ concentration of the abundance of non-complexing Ln^{3+} , one-coordinated, two-coordinated and three-coordinated and four-coordinated complexes with α -hydroxyisobutyrate ions and effective mobilities of La, Sm and Gd. pH_L = 4.7.

was ca. 3.5 when the leading K^+ concentration was in the range 4-12 mM. To improve this the concentration of K^+ should be increased but the safe range is limited for heavy lanthanoids, and above a certain concentration an isotachophoretic steady state could not be achieved. Thus not all lanthanoids could be separated at once isotachophoretically when HIB was used as the complexing agent.

To suppress the pH decrease and achieve an isotachophoretically steady state, the abundances of HIB complexes should be lowered. This could be realized by diluting HIB with weakly complex-forming by weakly interacting acetate ions. Fig. 8B shows the dependence on HIB concentration of the effective mobility of the lanthanoids. The effective mobilities decrease quickly on adding HIB and the decrease is large for the heavy lanthanoids. When 4 mM HIB was added, all lanthanoids could be separated, as already shown in Fig. 6. The simulated mobility of La was 39.1 \cdot 10^{-5} and that of Lu was $19.7 \cdot 10^{-5}$ cm² V⁻¹ sec⁻¹. The separation of Eu and Gd was the most difficult and the difference in the effective mobilities was $0.7 \cdot 10^{-5}$ cm² V⁻¹ sec⁻¹. Fig. 11 shows the dependence of HIB concentration on the abundances of HIB and acetate complexes. The formation of HIB complexes could be suppressed sufficiently by coexisting acetate complexes and the mixed ligand complexes of LnHIBAc⁺. A fairly large abundance of LnHIBAc⁺ was simulated. Without this species, the observed $R_{\rm E}$ values cannot be simulated accurately.

Hence the isotachophoretic separation of lanthanoids could be explained by an appropriate but small difference in the effective mobilities owing to the different abundances of the complex ions. Fig. 12 shows the simulated isotachopherograms of the observed ones shown in Fig. 6. The agreement is satisfactory.

Although the electrolyte concentrations used by Nukatsuka et al.¹ were very

Fig. 11. Dependence on α -hydroxybutyric acid concentration of the abundance of non-complexing Ln³⁺, one-coordinated, two-coordinated and three-coordinated complexes with HIB and acetate ions and effective mobilities of La, Sm and Tm. The K⁺ concentration is 9.85 mM and pH_L = 4.8.

Fig. 12. Simulated isotachopherograms of Na⁺ and fourteen lanthanoids coexisting with acetic acid and α -hydroxybutyric acid (1 and 4 mM).

high in comparison with those in this work, a simulation was carried under the reported electrolyte conditions; the K⁺ concentration was 25 mM, the HIB concentration was 15 mM and pH_L was adjusted to 4.92 by adding acetic acid. The simulated $R_{\rm E}$ values were in the range 2.5 for La to 6.5 for Lu. In comparison with the observed $R_{\rm E}$ values (2.7 for La to 5.9 for Lu) converted from the observed *PR* values (*PR* = $1/R_{\rm E}$, 0.37 for La to 0.17 for Lu), the agreement was not so good for heavy lanthanoids. The discrepancy suggests the formation of three-coordinated mixed ligand complexes such as LnHIB₂Ac. When the precise $R_{\rm E}$ values under such conditions are available, their stability constants may be evaluated.

REFERENCES

- 1 I. Nukatsuka, M. Taga and H. Yoshida, J. Chromatogr., 205 (1981) 95.
- 2 T. Hirokawa and Y. Kiso, J. Chromatogr., 242 (1982) 227.
- 3 T. Hirokawa, H. Takemi and Y. Kiso, J. Chromatogr., 280 (1983) 219.
- 4 F. H. Spedding, P. E. Porter and J. M. Wright, J. Amer. Chem. Soc., 74 (1952) 2055.
- 5 F. H. Spedding and I. S. Yaffe, J. Amer. Chem. Soc., 74 (1952) 4751.
- 6 A. Sonesson, Acta Chem. Scand., 12 (1958) 1952.
- 7 J. E. Powell, in K. S. Vorres (Editor), Rare Earth Research II, Gordon and Breach, New York, 1964.
- 8 C. D. Devine, *The Stability Constants of Some Carboxylate Complexes of the Trivalent Lanthanons*, IS-T-381, AEC Contract, No. W-7405-eng-82, Ames Laboratory, Iowa State University, Ames, IA, 1969.
- 9 Y. Suzuki and M. Mikado, Proceedings of the 8th Rare Earth Research Conference, Reno, Nevada, 1970, p. 266.
- 10 T. Hirokawa, M. Nishino and Y. Kiso, J. Chromatogr., 252 (1982) 49.
- 11 Landolt-Bornstein, Zahlenwerte und Funktionen, 6 Aufl., Band II, Teil 7, Springer Verlag, Berlin, 1960.
- 12 G. Charlot, Les Reactions Chimiques en Solution, Masson, Paris, 1969.
- 13 Y. Kiso and T. Hirokawa, Chem. Lett., (1979) 891.